Еще в начале 1960-х годов конструкторы рассматривали ядерные ракетные двигатели как единственную реальную альтернативу для путешествия к другим планетам Солнечной системы.Соревнование между СССР и США, в том числе и в космосе, шло в это время полным ходом, инженеры и ученые вступили в гонку по созданию ЯРД, военные тоже поддержали вначале проект ядерного ракетного двигателя. Поначалу задача казалась очень простой — нужно только сделать реактор, рассчитанный на охлаждение водородом, а не водой, пристроить к нему сопло, и — вперед, к Марсу! Американцы собирались на Марс лет через десять после Луны и не могли даже помыслить о том, что астронавты когда-нибудь его достигнут без ядерных двигателей. Американцы очень быстро построили первый реактор-прототип и уже в июле 1959 года провели его испытания (они назывались KIWI-A). Эти испытания всего лишь показали, что реактор можно использовать для нагрева водорода. Конструкция реактора — с незащищенным топливом из оксида урана — не годилась для высоких температур, и водород нагревался всего до полутора тысяч градусов.Всего с 1955 по 1972 годы на программу ядерных ракетных двигателей было потрачено $1,4 млрд. — примерно 5% стоимости лунной программы.Для СССР в те годы это была чрезмерная сумма. Конечно, пока военные поддерживали проект ядерной ракеты, финансирование шло в достаточных объемах. Но уже к 1961 году стало ясно, что задача доставки ядерной боеголовки куда угодно решается и с обычными химическими двигателями, а межпланетные путешествия интересовали высшее руководство страны лишь постольку, поскольку приносили политические дивиденды. Так что советская программа ядерного двигателестроения была неизмеримо скромнее — если американцы начали с двигателя тягой 70 тонн, то наши решили ориентироваться всего на 14 тонн. Такой небольшой ЯРД хорошо подходил на четвертую ступень ракеты «Протон». Конечно, и они были полны энтузиазма, и им хотелось построить хоть маленький, но «настоящий» ЯРД, и им тоже казалось, что это несложно. Но, к чести наших ученых, они очень быстро поняли глубину стоящих перед ними проблем. И «штурмовщина» сменилась системным подходом. Первый стенд, на котором испытывался «физический аналог» реактора будущего ЯРД, назывался «Стрела». Первое и главное отличие наших ЯРД от американских — их решено было делать гетерогенными. В гомогенных (однородных) реакторах ядерное топливо и замедлитель распределены в реакторе равномерно. В отечественном ЯРД ТВЭЛы (тепловыделяющие элементы, ядерное топливо) были отделены теплоизоляцией от замедлителя, так что замедлитель работал при гораздо меньших температурах, чем в американских реакторах. Следствие этого — отказ от графита и выбор гидрида циркония в качестве основного замедляющего материала. По нейтронно-физическим свойствам гидрид циркония близок к воде, поэтому, во‑первых, реактор получался втрое компактнее, чем графитовый (а значит, и намного легче), во‑вторых, физические модели двигательного реактора можно было отлаживать гораздо быстрее и дешевле.Второе, может быть, даже более радикальное отличие — в гидродинамике. Раз уж невозможно было добиться, чтобы ядерное топливо не растрескивалось в реакторе, нужно сделать так, чтоб растрескивание не приводило к изменениям свойств реактора — ни ядерных, ни гидравлических. Была проведена совершенно фантастическая по объему работа, в результате которой выбрали оптимальную форму стержней ядерного топлива — витые стерженьки с сечением в форме четырехлепесткового цветка, размер лепестков — всего пара миллиметров при длине стержня примерно в метр! Такие стержни, упакованные в плотную пачку, образуют систему каналов, свойства которых не изменяются, даже если стержни в процессе работы растрескиваются. Больше того, обломки размером даже в доли миллиметра оказываются заклинены соседними кусками стержня и остаются на месте! В сопло уносятся только совсем микроскопические частицы, максимум в десятки микрон.Для достижения максимальной температуры водорода на выходе эти стержни содержали переменное по длине количество урана — чем ближе к «горячему» концу, то есть к соплу, тем меньше было делящегося материала. Назвали это «физическим профилированием». Конструкторы жертвовали компактностью реактора ради экономии водорода — тепловые потоки такой величины, как на «холодном» конце стержня, где перепад температур достигал 25000С, были невозможны на горячем, разница температур между ядерным топливом и водородом уменьшалась в 10 раз — во столько же нужно было снизить теплопоток. На этом удалось выиграть еще 3500С выходной температуры.При такой конструкции реактора регулирующие нейтронный поток органы тоже пришлось вынести наружу. В традиционных реакторах это стержни, размещенные более или менее равномерно по объему. В ЯРД реактор был окружен отражателем нейтронов из бериллия, в который были врезаны барабаны, покрытые с одной стороны поглотителем нейтронов. В зависимости от того, какой стороной барабаны были обращены к активной зоне, они поглощали больше или меньше нейтронов, что и использовалось для управления реактором. К этой схеме пришли в итоге и американцы.Ядерное топливо для реактора ЯРД — это отдельная, тоже очень объемная работа. Для исследования свойств материалов при таких условиях пришлось построить специальный опытный реактор ИГР, в котором исследуемый ТВЭЛ мог иметь температуру на 10000С больше, чем основной объем активной зоны. В два с половиной раза был в этом месте больше и поток нейтронов.В результате топливо стало композитом, как стеклопластик, из карбидов урана и вольфрама или циркония, причем при такой высокой температуре кристаллы карбида вольфрама придавали ему прочность, а карбид урана заполнял пространство между ними. И тут наши обошли американцев — заокеанские ядерщики уже научились использовать карбид урана вместо обычного для ядерной энергетики оксида и комбинировать его с карбидами других металлов, но до композитной структуры в своих исследованиях не дошли. Выпуском столь сложного ядерного материала занималось подольское НПО «Луч».На Семипалатинском полигоне, в 50 километрах от места испытаний первой ядерной бомбы, для реакторов ЯРД был построен специальный стендовый комплекс «Байкал». «Планов громадьё» предусматривало в нем две очереди, но реализована была только первая. Из-за этого не было возможности испытать реактор с жидким водородом, да и испытания с газообразным сжатым удалось провести не в полном объеме. Тем не менее были построены два рабочих места, одно с реактором ИВГ-1, другое для реактора ИРГИТ. Реактор ИВГ-1 был многоцелевым, он мог использоваться и как стендовый прототип будущего ЯРД тягой 20−40 тонн, и как стенд для испытания новых видов ядерного топлива. Старенький ИГР, заложенный еще при жизни Курчатова (Игорь Васильевич в шутку называл его ДОУД-3), мог работать только в импульсном режиме, так как вовсе не имел охлаждения и выделявшееся тепло разогревало активную зону до 30000C за несколько секунд, после чего требовался многочасовой перерыв. ИВГ мог работать до двух часов подряд, что давало возможность изучить долговременное влияние условий работы на ядерное топливо. Именно с него и началась в 1972 году работа на «Байкале». Несмотря на водяной замедлитель, водород, …
Читать далее “9 января 1930 года родился Лев Николаевич Никитин — ведущий конструктор Конструкторского бюро «Химавтоматика» по жидкостному ракетному двигателю РД-0120 и ядерному ракетному двигателю РД-0410. Лауреат Госпремии.”